Identification of CD25 as STAT5-Dependent Growth Regulator of Leukemic Stem Cells in Ph+ CML.
نویسندگان
چکیده
PURPOSE In chronic myelogenous leukemia (CML), leukemic stem cells (LSC) represent a critical target of therapy. However, little is known about markers and targets expressed by LSCs. The aim of this project was to identify novel relevant markers of CML LSCs. EXPERIMENTAL DESIGN CML LSCs were examined by flow cytometry, qPCR, and various bioassays. In addition, we examined the multipotent CD25(+)CML cell line KU812. RESULTS In contrast to normal hematopoietic stem cells, CD34(+)/CD38(-)CML LSCs expressed the IL-2 receptor alpha chain, IL-2RA (CD25). STAT5 was found to induce expression of CD25 in Lin(-)/Sca-1(+)/Kit(+)stem cells in C57Bl/6 mice. Correspondingly, shRNA-induced STAT5 depletion resulted in decreased CD25 expression in KU812 cells. Moreover, the BCR/ABL1 inhibitors nilotinib and ponatinib were found to decrease STAT5 activity and CD25 expression in KU812 cells and primary CML LSCs. A CD25-targeting shRNA was found to augment proliferation of KU812 cellsin vitroand their engraftmentin vivoin NOD/SCID-IL-2Rγ(-/-)mice. In drug-screening experiments, the PI3K/mTOR blocker BEZ235 promoted the expression of STAT5 and CD25 in CML cells. Finally, we found that BEZ235 produces synergistic antineoplastic effects on CML cells when applied in combination with nilotinib or ponatinib. CONCLUSIONS CD25 is a novel STAT5-dependent marker of CML LSCs and may be useful for LSC detection and LSC isolation in clinical practice and basic science. Moreover, CD25 serves as a growth regulator of CML LSCs, which may have biologic and clinical implications and may pave the way for the development of new more effective LSC-eradicating treatment strategies in CML.
منابع مشابه
Chronic myeloid leukemia stem cells are not dependent on Bcr-Abl kinase activity for their survival.
Recent evidence suggests chronic myeloid leukemia (CML) stem cells are insensitive to kinase inhibitors and responsible for minimal residual disease in treated patients. We investigated whether CML stem cells, in a transgenic mouse model of CML-like disease or derived from patients, are dependent on Bcr-Abl. In the transgenic model, after retransplantation, donor-derived CML stem cells in which...
متن کاملSelective JAK2/ABL dual inhibition therapy effectively eliminates TKI-insensitive CML stem/progenitor cells
Imatinib Mesylate (IM) and other tyrosine kinase inhibitor (TKI) therapies have had a major impact on the treatment of chronic myeloid leukemia (CML). However, TKI monotherapy is not curative, with relapse and persistence of leukemic stem cells (LSCs) remaining a challenge. We have recently identified an AHI-1-BCR-ABL-JAK2 protein complex that contributes to the transforming activity of BCR-ABL...
متن کاملSTAT5 as a CML target: STATinib therapies?
BCR-ABL activate many signaling pathways in leukemic cells, such as RAS, PI-3K and NFB. STAT5 was one of the first pathways to be described as being constitutively activated by p210 BCR-ABL and p190 BCR-ABL.3-5 STAT5 activation has been shown to be correlated with functional effects such as antiapoptosis through activation of Bcl-XL6 and drug resistance phenotype through activation of Rad51.7 B...
متن کاملClonal dominance of chronic myelogenous leukemia is associated with diminished sensitivity to the antiproliferative effects of neutrophil elastase.
Clinical observations suggest that in chronic myelogenous leukemia (CML), the Philadelphia chromosome (Ph+) clone has a growth advantage over normal hematopoiesis. Patients with CML have high levels of neutrophil elastase, which has recently been shown to antagonize the action of granulocyte-colony-stimulating factor (G-CSF) and other growth factors. We therefore compared the effect of elastase...
متن کاملIdentification of human chronic myelogenous leukemia progenitor cells with hemangioblastic characteristics.
Overwhelming evidence from leukemia research has shown that the clonal population of neoplastic cells exhibits marked heterogeneity with respect to proliferation and differentiation. There are rare stem cells within the leukemic population that possess extensive proliferation and self-renewal capacity not found in the majority of the leukemic cells. These leukemic stem cells are necessary and s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 22 8 شماره
صفحات -
تاریخ انتشار 2016